Semantic Role Labeling with Maximum Entropy Classifier

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semantic Role Labeling System Using Maximum Entropy Classifier

A maximum entropy classifier is used in our semantic role labeling system, which takes syntactic constituents as the labeling units. The maximum entropy classifier is trained to identify and classify the predicates’ semantic arguments together. Only the constituents with the largest probability among embedding ones are kept. After predicting all arguments which have matching constituents in ful...

متن کامل

Maximum Entropy Based Semantic Role Labeling

The semantic role labeling (SRL) refers to finding the semantic relation (e.g. Agent, Patient, etc.) between a predicate and syntactic constituents in the sentences. Especially, with the argument information of the predicate, we can derive the predicateargument structures, which are useful for the applications such as automatic information extraction. As previous work on the SRL, there have bee...

متن کامل

Semantic Role Labeling using Maximum Entropy Model

In this paper, we propose a semantic role labeling method using a maximum entropy model, which enables not only to exploit rich features but also to alleviate the data sparseness problem in a well-founded model. For applying the maximum entropy model to semantic role labeling, we take a incremental approach as follows: firstly, the semantic roles are assigned to the arguments in the immediate c...

متن کامل

Semantic Role Labeling of NomBank: A Maximum Entropy Approach

This paper describes our attempt at NomBank-based automatic Semantic Role Labeling (SRL). NomBank is a project at New York University to annotate the argument structures for common nouns in the Penn Treebank II corpus. We treat the NomBank SRL task as a classification problem and explore the possibility of adapting features previously shown useful in PropBank-based SRL systems. Various NomBank-...

متن کامل

Semantic role labeling with Boosting, SVMs, Maximum Entropy, SNOW, and Decision Lists

This paper describes the HKPolyU-HKUST systems which were entered into the Semantic Role Labeling task in Senseval-3. Results show that these systems, which are based upon common machine learning algorithms, all manage to achieve good performances on the non-restricted Semantic Role Labeling task.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Software

سال: 2007

ISSN: 1000-9825

DOI: 10.1360/jos180565